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Abstract—This work demonstrates DISCERN (Detection Im-
age System with Commonsense Efficient Ranking Network), a
novel generalizable task-ranking approach to improve human-
robot collaboration via “discern”-ing with commonsense knowl-
edge (CSK) derived from huge data repositories, augmented with
image models and other everyday premises. It is an explainable,
efficient solution useful to dynamic multipurpose robots.

Index Terms—AI & Robotics, CSK, Commonsense Reasoning,
Human-Robot Collaboration, Task Planning, Sustainable AI, XAI

I. INTRODUCTION

The DISCERN algorithm (Detection Image System with
Commonsense Efficient Ranking Network) was designed to
improve task prioritization in human-robot collaboration by
incorporating commonsense reasoning. Unlike traditional ap-
proaches that rely on pre-training or imitation learning, DIS-
CERN operates “out of the box” by using pre-trained image
models, commonsense knowledge bases (CSKBs), and human-
derived priorities to determine optimal task order.

Initially applied in a household dining task [1], the orig-
inally proposed DISCERN system proved effective at pri-
oritizing based on object attributes like size, distance, and
potential danger—without the training requirements of ML-
based models. We proffer further enhancements here with
respect to the definition of more CSK premises, and the
execution in a different yet related context.

From a big data perspective, it is to be noted that by
minimizing the need for resource-intensive training and re-
tuning, DISCERN aligns with the principles of sustainable
AI, addressing both ecological and computational efficiency
[2]. Moreover, it also contributes to the growing field of
Explainable AI (XAI) [3], as DISCERN’s rule-based priori-
tization provides easy interpretability, ensuring more trust in
its deployment within critical human-robot collaborative tasks.

In this paper, we demonstrate the DISCERN system with its
execution in an everyday context. We also explain its extension
which allows flexible categorization and rule-based priority
definitions, enabling it to support multiple semantic classes,
adaptable attributes, and context-specific rules, making it a
robust solution across various collaborative settings.

II. RELATED WORKS

Imitation tasks, such as IRIS [4], while performing well in
their domain, fail to generalize in new and unseen contexts,
requiring new data and training to function.

Guérin et al. [5] propose an algorithm to sort objects by
visual similarity via CNN & clustering. Being an unsupervised
algorithm, it does a great job of generalizing. However, it is
limited only to visual similarity and doesn’t account for the se-
mantics of the objects and other details not discernable purely
by visuals. DISCERN’s semantic understanding of context not
only covers more visual features (size, weight, shape) but also
includes other useful aspects such as temperature and fragility.

Commonsense is important, not just in humans but in robots
as well. Whether through static graphs or non-deterministic
models, commonsense knowledge is crucial for reasoning and
decision-making in AI systems [6]. Recent work towards
semantic understanding in robotic environments has been
focusing on Large Language Models (LLMs). For example,
Ocker et al. [7] explore the use of LLMs to extract common-
sense knowledge for robots, proposing their integration with
traditional knowledge bases. Their experiments demonstrate
that while LLMs are effective at large-scale knowledge extrac-
tion for creating ontologies, they lack the reliability needed for
consistent performance. This suggests that a hybrid approach,
combining LLMs with symbolic reasoning systems, is neces-
sary for robust performance.

A recent review [8] highlights the importance of common-
sense knowledge (CSK) in cognitive robotics for handling
dynamic tasks, emphasizing object-focused knowledge like lo-
cation and affordances in household settings. Certain machine
learning applications do better when commonsense knowledge
is applied to them [9]. For example, Hidalgo et al. [10]
demonstrate the use of commonsense knowledge in robotics by
integrating a knowledge base for task-relevant object classifi-
cation, outperforming deep learning-only approaches in adapt-
ability, consistency, and explainability in domestic settings.
CSK-Detector [11] uses commonsense knowledge to enable
domestic robots to understand environments for specific tasks,
achieving efficient and explainable object detection without
extensive image annotation.

Additionally, commonsense reasoning has been applied in
human-robot collaboration (HRC) to enhance task execution
and safety in manufacturing contexts. For example, Töberg et
al. [12] present a system that uses CSK-based reasoning to
prioritize tasks, improving efficiency and scalability in both
simulations and real-world experiments.



Fig. 1. Concept Net Relations

III. APPROACH AND IMPLEMENTATION

We design an approach “DISCERN” (Detection Image System
with Commonsense Efficient Ranking Network) [1] that has
an architecture with flexible categorization and rule-based
priorities. It uses an object detection model only for basic
identification of individual objects from scenes and there-
after deploys Commonsense Knowledge (CSK) extracted from
large-scale knowledge bases such as ConceptNet [13]. The
ConceptNet KB is a large-scale, multilingual knowledge graph
designed to provide commonsense knowledge for AI systems,
enabling reasoning about everyday concepts and relationships.
Nodes in the graph are connected by unidirectional relations,
such as in Fig. 1 It reasons using CSK along with other
commonsense premises, as discussed next.

Afterward, the classification is used to apply physical and
semantic attributes to each object. Then, the algorithm sorts the
objects based on these attributes depending on user-specified
priorities. For example, the objects can be sorted based on
their size, weight, temperature, fragility, or whether the object
should be thrown out or recycled. Fig. 2 shows a bird’s eye
view of the whole DISCERN process.

Fig. 2. A Panorama of the DISCERN Process

But how well, and more importantly, how easily, does DIS-
CERN generalize to new contexts? To answer this question,
we introduce configurable components — classes, priorities,
rules — allowing it to operate in multiple CSK-based contexts.
We propose 2 types of rules for class discernment: Ordering
& Absolute. Ordering rules manage class conflicts, where
an object can belong to multiple classes, e.g. a wine glass
may be as a decoration or container; ordering rules prioritize
container over decoration. Absolute rules offer associations
to override flexible assignments, linking certain keywords to

specific classes. They expedite class assignments, reducing
ambiguity, e.g. glass can be mapped directly to container,
and prioritized. Absolute rules give precise class boundary
control, define the reach of classes, and manage overlapping
categories. Ordering & absolute rules together can enhance
task prioritization via CSK-based “discern”ment.

Fig. 3. Main Objects in Scene Fig. 4. DISCERN Process Visualized

DISCERN is a boon to robotics & its enormous data. Else,
excessive pre-training on millions of full scenes is inefficient
& non-explainable. DISCERN is efficient & explainable via its
use of image models for basic object identification in scenes
(only 100s vs. millions), reusable knowledge extracted one-
time from CSK sources, and clearly “discern”able premises.

IV. EXPERIMENTAL SETUP

To test this generalized variant of DISCERN, we employed
it in another domestic context - recycling household items.
DISCERN, being both a classification and ordering algorithm,
can do either or both efficiently. In this test, we assort a range
of common items that are usually trashed or recycled, as well
as objects that can be found with these items but are not to
be thrown out. Fig. 3. The list of items and their ground truth
labels can be found in Table I.

TABLE I
ATTRIBUTES OF ITEMS IN RECYCLING TASK

Recycle Garbage Permanent

Plastic Tray Burgers Vase
Takeout Box Pizza Books
Foam Cup Pizza Box Wineglass

We then ask the agents to sort these objects according to
their commonsense knowledge. We compare the generalized
DISCERN against a random baseline, in which the robot has
no prior intuition as to where each object should go.

The human agent in the simulation has a constant pick-up
time of three seconds for each object. Since there are eight
total removable objects, it takes 24 seconds to trash/recycle
all removable objects. We assume that the human, according
to their commonsense and intuition, knows the ground truth
result of each object (recycle, garbage, permanent) and thus
makes not mistakes.

The robot agent also has a constant pick-up time of three
seconds. However, the robot can fail to handle the object in
one of two ways. Either it attempts to throw out or recycle a
permanent object (i.e. a book), or misclassify a garbage item
as a recyclable (and vice versa). In either case, the robot goes



through a one-second delay, but the object is not removed. We
equal this to the case that the human intervenes and prevents
the robot from going through with the action.

We set up four agent scenarios. The first experiment is the
human baseline to provide an idea the “current” time, which
we want to enhance by introducing human-robot collaboration.
In the second experiment, the robot agent sorts randomly,
while in the third it uses DISCERN. The fourth experiment
introduces the human-robot collaboration with random robot
sorting. Finally, the fifth experiment simulates collaborative
sorting with the robot agent using the DISCERN algorithm.

V. RESULTS

The results of these experiments are summarized in Table
II. As seen here, DISCERN outperforms other alternatives in
general. In a solo scenario, the robot agent performs better than
the random baseline due to less misclassification. The better
performance is translated to the collaborative environment,
where the DISCERN-enabled robot agent finished the collab-
orative task about 21% faster. Less misclassification results in
the burden of the sorting shifting towards the robot rather than
relying extensively on the human, as shown in the increase of
removal count by the robot in last column of Table II.

TABLE II
SIMULATION RUNTIMES (SECONDS)

Experiment Avg. Time (s) Human Ct. Robot Ct.

Human Only 24 8 0
Robot Only (Random) 40 0 6

Robot Only (DISCERN) 27 0 6
Collaborative (Random) 19 6 2

Collaborative (DISCERN) 15 4 4

VI. CONCLUSIONS AND FUTURE WORK

We design a novel approach “DISCERN”, able to discern
robotic settings. With minimal setup and no pre-labeled train-
ing data, it adequately discerns its surroundings via CSK-
based classes, rules & priorities. To the best of our knowledge,
DISCERN is unique in its architecture, especially its ordering
& absolute rules on CSK premises, enhancing multipurpose
context discernment. It is efficient & explainable, a big asset to
the big data world. In the future, we will deploy DISCERN in
a live robotics lab to test it in real-world settings. We also hope
to test DISCERN in sorting tasks with state-of-the-art pure-ML
algorithms, in order to compare compute time, performance,
and generalizability to unseen contexts. Additionally, we rec-
ognize that deployment in households necessitates the model
to be robust in different cultural settings. Accordingly, we hope
to address cultural variations by integrating methodologies
such as those in Candle [14], which extract and organize
cultural commonsense knowledge (CCSK) to enhance situative
adaptability and inclusivity for diverse user needs. We can
delve into other advances such as machine unlearning [15]
with respect to robotics to address further perspectives.

In general, in addition to demonstrating an interesting
application of CSK extraction [16] in line with modern-day
AI systems, the DISCERN system contributes to sustainable
AI, and explainable AI, hence making broader impacts on
responsible AI [17] as well.
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[8] J.-P. Töberg, A.-C. Ngonga Ngomo, M. Beetz, and P. Cimiano, “Com-
monsense knowledge in cognitive robotics: a systematic literature re-
view,” Frontiers in Robotics and AI, vol. 11, 2024.

[9] N. Tandon, A. S. Varde, and G. de Melo, “Commonsense knowledge in
machine intelligence,” ACM SIGMOD Record, vol. 46, no. 4, pp. 49–52,
2017.

[10] R. Hidalgo, J. Parron, A. S. Varde, and W. Wang, “Robo-csk-organizer:
Commonsense knowledge to organize detected objects for multipurpose
robots,” arXiv preprint arXiv:2409.18385, 2024.

[11] I. Chernyavsky, A. S. Varde, and S. Razniewski, “Csk-detector: Com-
monsense in object detection,” in 2022 IEEE International Conference
on Big Data (Big Data), pp. 6609–6612, IEEE, 2022.

[12] C. J. Conti, A. S. Varde, and W. Wang, “Human-robot collaboration
with commonsense reasoning in smart manufacturing contexts,” IEEE
Transactions on Automation Science and Engineering, vol. 19, no. 3,
pp. 1784–1797, 2022.

[13] R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5: an open multilingual
graph of general knowledge,” in Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, AAAI’17, p. 4444–4451, 2017.

[14] T.-P. Nguyen, S. Razniewski, A. Varde, and G. Weikum, “Extracting
cultural commonsense knowledge at scale,” in Proceedings of the ACM
Web Conference 2023, pp. 1907–1917, 2023.

[15] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia,
A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,”
in 2021 IEEE Symposium on Security and Privacy (SP), pp. 141–159,
IEEE, 2021.

[16] S. Razniewski, N. Tandon, and A. S. Varde, “Information to wisdom:
Commonsense knowledge extraction and compilation,” in Proceedings
of the 14th ACM International Conference on Web Search and Data
Mining, pp. 1143–1146, 2021.

[17] V. Dignum, Responsible artificial intelligence: how to develop and use
AI in a responsible way, vol. 2156. Springer, 2019.


	Introduction
	Related Works
	Approach and Implementation
	Experimental Setup
	Results
	Conclusions and Future Work
	References

